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ABSTRACT

=" A class of finite order two dimensional autoregressive moving average (ARMA) is
introduced having the ability to represent any process with rational spectral density.
In this model, the driving noise is correlated and need not be Gaussian. Currently
known classes of ARMA models or AR models are shown to be subsets of the above
class. »\;"ésd?:c(ﬁ‘sms:sihe three definitions of markov property and precisely statesthe class
of ARMA models having thé noncausal and semicausal markov property without
imposing any specific boundary conditions. Next j;é considersthe estimation of parame-
ters of a model to fit a given image. Two approaches are considered. The first method
uses only the empirical correlations and involves the solution of linear equations. The
second method is the like!ihood approach. Since the exact likelihood function is
difficult to compute, ;fe:;:so;ts,&o approximations suggested by the toroidal models.

The quality of the two estimation schemes are compared via numerical experiments.

he
Finally, y€ consider;&he problem of synthesizing a texture obeying an ARMA model.
(B

B

\
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Two dimensional ARMA models, noncausal markov, semi-causal markov, parameter

estimation, synthesis of texture, nongaussian images.
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I. Introduction
Parametric representations for two dimensional random fields are useful in many
applications like image synthesis, classification, spectral estimation, etc. The aim of the
paper is to develop a finite stochastic difference equation model for regular two dimen-
sional random fields having rational spectral densities and discuss related topics like the
various definitions of weak markov processes, parameter estimation and synthesis of
textures resembling a given non Gaussian texture.

We will first give the background information regarding the structural representa-
tions. Rosanov [1], Woods [2] and Besag [3] have shown that any Gaussian markov
field having an all pole spectral density (i.e., a reciprocal of a linear sinusoidal function)
possesses a finite difference equation representation, the so-called conditional autore-
gressive (CAR) model in which the driving input noise is correlated, but does not have,
in general, a moving average representation. The set of models suggested earlier such
as the simultaneous AR models [3, 4], causal recursive models [5, 6] is a proper subset
of the set of CAR models.

As discussed later, the various types of 2-D autoregressive moving average
(ARMA) models discussed in (7, 8, 9, 11] have the restriction that the denominator of
the  corresponding  spectral  demsity, say A(z), is factorable, i.e.,
A(z) = Dy(2z,,29)Dy(21),25"). Thus no general finite difference equation model is avail-
able for representing a discrete random field having a rational spectral density in which
both the numerator and the denominator are not factorable. We emphasize the use of
the word ‘finite’ since a  simple spectral density such as
[1 + @(cosh; + coshg))/[1 — B(cosh; + coshp)l, | 4| ,i 0] < 05,6#6, cannot be
represented by any of the ARMA models in [7, 8, 9, 11)] using a finite number of param-
eters, but can always be represented by these models using an tnfinite number of
parameters. But the principle of parsimony precludes the use of a model having a large

number of parameters especially in tasks such as fitting of models to the given data. In
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contrast the class of recursive finite ARMA models in one dimension can represent any
process with a rational spectral density of finite order.

The 2D case differs significantly from the 1D case in relation to the markov pro-
perty. There are 3 types of weak markov property, namely, causal [10], semi-causal |8,
9] and non-causal [1-3]. In contrast with the 1D case where a process obeying an
ARMA model is a projection of a vector markov process, the general ARMA model in
the 2D case is neither markovian according to any of the three definitions nor a projec-
tion of another markov process. However, a particular subset of ARMA models is
shown to possess the semi-causal markov property which was introduced in (8, 9]. We
will clarify the precise structure of the ARMA models having the requisite semi-causal
markov property without imposing any special boundary conditions.

The next topic to be covered is the estimation of parameters in a model to fit a
given finite image. We present two approaches. In the first approach the parameter
estimates are computed from the empirical correlations by solving linear equations.
There are no iterations in contrast with the 1D ARMA model parameter estimation
problems. The second approach utilizes the likelihood. The exact expression for the
likelihood of the given observations in terms of the parameters is very complicated. We
consider an approximation which is easy to handle. The approximation happens to be
the exact likelihood when the observations obey a variant of the ARMA model, the so-
called toroidal ARMA model. Finally we discuss a procedure for synthesizing a texture
obeying a given ARMA model.

Section I deals with the general ARMA representation, the related markovian pro-
perties, and the relation to existing 2D difference equation models. Section Ill contains
the parameter estimation using the estimated correlations. Section IV deals with the
likelihood approach which includes the results of numerical experiments on the quality

of estimates. The next section deals with the problems of synthesizing a texture to

resemble a real texture.
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II. The ARMA Model !"!
Let y(s), s ¢ L be a two dimensional random field L = {(j,k): j,k are integers}. Let ',
?'4
y(*) be stationary and have the correlation function Ry(s) and spectral density 1
4

S(z), 2=(z),29).

s = 8% Rk, @.1)

J=—00 k=-o0

= vB(z)/A(z), z = [exp 2mi\,,exp2miN,], i = VI, (2.2)

where A(z) =1- Y, 60,2,B(z) =1+ Y 420 =0, 6. =6¢_,.
reN, reN,

N; are finite subsets of (L-(0,0)) and are symmetric, i.e., if (j,k)eN; then (—j,~k)eN;,
i = 1,2. A and B are finite order polynomials. A(z;,25) = A(z;},z;'). Similarly B.

A(z) # 0 and B(z) # 0 for all z such that |z] =1,i =12 (2.3)
A(z) and B(z) have no common zero. (2.4)

Conditions (2.3) and (2.4) assure that S(z) is finite, and positive for all real X = (\;,),).
Our aim is to develop a finite difference equation representation for y(-) valid for any

spectral density S(¢) obeying (2.2)-(2.4).

Theorem 1: The stationary random field y(°) with its spectral density in (2.2) obeying

the conditions (2.3)-(2.4) obeys the bilateral autoregressive moving average model which

can be represented as in (2.5) or (2.6).

¥() = % Oy(s+r) + Vo els). (2.5) o
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A(z)y(s) = Vv e(s). (2.6)

In (2.5) or (2.6), e(s) is a zero mean stationary correlated sequence with the spectral
density in (2.7).
S¢(z) = A(z)B(z) (2.7)

Proof: If y(*) obeying (2.5) exists, then taking spectral density of both sides of the equa-
tion (2.6) and using (2.7) indicates that the spectral density of y(*) is as in (2.2). Thus
all we have to show is the existence of a sequence y(*) obeying (2.5). This will be done

by construction.

Let {w(s), s ¢ L} be an infinite sequence of independent and identically distributed

random variables having mean zero and variance unity. Let w(*), e(*), ¥(*) stand
respectively for the fourier transform of the infinite sequence w(*), e(*), and y(*). Com-
pute e(z)

é(z) = vB(z)A(z) w(z)

Then the fourier inverse of &(z) yields the sequence {e(s), s ¢ L} having zero mean and
spectral density B(z)A(z). Compute ¥(z) as shown below, which is finite for all
|21] =1and |zy] = 1in view of (2.3).

j(2) = Vv ¥2)/A(2)

Rearranging the above equation, we get

(1~ % 02)(2) = Vb &)

The fourier inverse of ¥(*) yields the desired sequence y(*) obeying (2.5).
Comment 1: In view of (2.7) the sequence e(s) has nonzero auto correlation only

over a finite number of lags, as displayed in (2.8)
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i | E[e(t)e(t +S)] = —"?\}l ¢r $ 93—1' if seN'’, (2'8)

L
l‘.l
L , .8

&

=0, otherwise )

where N{ = NU{0,0}, N’ = {r+s:re N, s e N;},
o0 =1, bpo =1,
¢, =0, ifs¢gN;,, 0, =0ifr¢N;.

The sequence e(s) has non zero correlation with y(s +r) only for a finite number of
values of r. To prove this statement, let us find the cross spectral density S,,() from
eq. (2.6).

Sey(2) = (VV/A(2)) S(2)
= Vv B(z), from (2.7), (2.9)

Equating the coefficients of z" on either side, we get

Ele(s)y(s+r1)} = Vv ¢,, if r ¢ Ny, (2.10)

= 0, otherwise.

Comment 2: An alternative representation for y(*) obeying (2.5) is given below:

VA(z) y(s) = Vv vVB(z) w(s), (2.11)
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1@ where {w(s)} is an independent and identically distributed (LI.D.) sequence with zero

I'::I'::f mean and unit variance. V/A(z) and VB(z) are infinite order symmetric polynomials <
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involving only a finite number of parameters 6, and ¢,. One can verify that the spec-
tral density of y() obeying (2.11) is as in (2.2). The representation in (2.11) is more
suitable for synthesis of an image, as discussed in section V. Note that the probability

density of w(*) can be chosen as desired.

)

Comment 3: Viewing (2.6) as an input-output system with e(*) as input and y(*) as the
output, we can see, as in the proof of theorem 1, that a necessary and sufficient condi-
tion for the BIBO stability is that A(z) # 0 for |z,| =1 and | zp| =1. In section V a
specific algorithm is given for synthesis using this condition. The condition B(z)#0 for
| ;| =1 and |2z5] =1 is needed for constructing a whitened representation of y(*) as
shown below, where w(z) is the fourier transform of the whitened sequence and simi-
larly y(¢).
#(z) = VA(Z)/B(z) 7(2).

The condition (2.4) on A and B in addition to (2.3) is needed to ensure the

identifiability of the parameters 6, and ¢,, as indicated later.

Relation to currently known ARMA models

Case (1): The conditional auto regressive (CAR) model [1, 2, 3] is a special case of (2.6)
and (2.7) with B(z)=1. The CAR models are called as minimum variance representa-

tions (MVR) in [9].

Case (2): The simultaneous AR model [3, 9, 10], also called as a white noise driven
representation (WNDR) in [9] is a special case of (2.6) and (2.7) where B(z)=1 and A(z)

has a factorization as in (2.12).
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A(z) = KD(z)D(z7!), D(z) = 1-Y] 6,2, N need not be symmetric. (2.12)
N

A simultaneous ARMA model [9, 11, 24] is a special case of {2.6) and (2.7) in which

both A and B have a factorization as in (2.12).

Case (3): Consider the 2-D ARMA models introduced in [7] in which ®(z), a special 2-

D transform of the correlation function defined in (2.13) is a rational function as in

(2.14)

Banz) =3 Y Rl 2iz) (2.13)

i=0 j=—o0
= C(z)/D(z), (2.14)

where

M, M, . M, M, -
Clz) = Y Y ¢z D(z) = Y Y dj 2324

i=0 j=0 i=0 j=0

We emphasize that ®(*) is distinct from the spectral density S defined in (2.1 even
though @ is also called a spectral density in [7]. The ARMA models which possess a ®
function as in (2.14) is a proper subset of the processes having spectral density S as in
(2.2) and hence a proper subset of the ARMA models defined in (2.6) and (2.7). This

result 1s stated as theorem 2.

Theorem 2: If there exists a stationary process y(*) with its ¢ function as in (2.14), its

spectral density S has the structure as in (2.15).
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M, M
S = vB(z)/D,(z) Dy(z7Y), Dy(z) = Z E d;; 2 2d, (2.15)

i=0 j=0

oA

M, > M,, B need not be factorable.

I T

v
Y

s,
o Proof: 3
._: :}*:‘:.
3 0, m Lo R R po B
I Y XY RG)zizd=3 3 R(Hijz'z4 T3
I i=—00 j=—00 i=0 j=—o0 :_.::::
b:: . ::ni
> -0
R & ® 4
N =y ¥ R(-i,—j)z;" 253, by replacing j by —j -
B i=0 j=—o0

.‘ '.! ..'-

= 00 o0 -
i =Y, Y R(ij)z' zg since R(i,j) = R(-i,—j)
b 1=0 i

0

]

8
IRL 2 ra

|}
N .8 (AR fe
/\‘S o '.‘ o) .

= &(z7!,251), in view of (2.13).

LY
0% 0y
abod

2 © . Gyz)Gylzg)
R(0,j)zj = L2 1*2 ]
N j=§_:°° s Ga(29)Gol25 ")

S N
N ol
% My =73
~ where Gj(z5) = Z g:2&, in view of the factorability of 1-D polynomials. '.j;

k=0
From (2.1),

PAMADS .
D e I e

00 00 0 00 . 00 . o~
Szpza) = | ¥ + ¥ Y |RGj)zizd—= X R(0,j)zd

i=0 j=—=00 i==-00 j=-oo| . j==00 Lo

.‘U“."' Feise =

= B(z5,2) + D(z1',25") = Gi(29)Gy(251)/Gol25)Gol25 )
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- C(z) + c(z’l) _ IGI(Zz)Iz
D(z)  D(z) |Galzy)]?

. vB(z)
[D(2)Ga(z2)][D(z™")Gol2 1))

= vB(z)/Dy(z)Dy(z™"),

where B(z) is the numerator normalized so that its constant term is one and

D,(z) = D(z)Go(z,)

Ml Mz i N’iaz ;
=12 Y dyzizd| | Y 8y
i=0 j=0 j=0
wow
=Y ¥ iz, M > M,
i=0 j=0

Comment: A simple consequence of theorem 2 is that a process y(¢) with spectral den-
sity as in (2.2) with a non factorable denominator A cannot have a ¢ function as in

(2.15) and thus cannot have the corresponding ARMA representation given in [7].

Case (4): Consider the spectral density in (2.2) in which both A and B have the follow-

ing factorization.

A(z) = K\Dy(2)D(z7"), B(z) = K;Dy(z)Dg(z™),

Diz) =1- % dzf, Dyfz) =1- %] d,z"
reN, reNg

NNy CL7, (0,0)¢ Ny (0,0)¢N5. Both N, and Nj are subsets of the nonsymmetrical
half plane (NSHP) L~ indicated in figure 1. Then the corresponding ARMA difference
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equation can be written as:

¥is) = % dyls+r) + V' (ws) + B dyw(s+i),
reN, reNg
where w(*) is LL.D. (0,1) sequence. The above equation is the analog of the traditional
ARMA model in time series. If in the above equation, in addition, B(z) =1 or
equivalently, d; = 0, then the corresponding process y(*) is said to possess the weak

linear causal markov property, i.e.
E[y(s)| ally(s+r), reL7] = Y dyy(s+r), Ny C L7, (2.16)
reN, '
The corresponding difference equation is called as a causal AR representation [9).
In this case, it is possible to divide the image at any point s into 3 parts, namely, s is
the present, the set {s+r:reL7} is the past, and {s+r,r #(0,0), r¢ L7} is the

future.

Case 5: Semicausal models [9] is shown to be a subclass of the general ARMA class in
theorem 5 to be proved later.
Let us evaluate the conditional expectation of y(s) given all other values for the

general model in (2.5).

Theorem 3: The sequence y(*) in Th. 1 obeying (2.5) and having a Gaussian density

has the following conditional expectation and variance

yi(s) a E[y(s)| ally(s+r), r #(0,0)) = Y, gy(s+r), (2.17)
r#(0,0)

El(y(s) - y1(s)*] = v/K, (2.18)

where K and g, are defined as
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b _.*. ‘
3 i
0% i
4
K- % g2) = A(z)/Bla), (2.19) L
rel! ]
.\"_‘- K
'\{:n ' = = ::
oY’ L' =L -(00), g =g, ?
2eid d
PO )
= :
oy ]
ot Proof: Let G(z) = Y, g,2".
A rel,
h'.;ﬁj; A
h u(s) = y(skyils) = (1 = G(z))y(s). (2.20)
o
‘;S.‘- The cross spectral density between v and y is
_'-:::' Svy(z) =(1- G(z))syy(s)y

= y/K, from (2.2).

Hence

% -

[y
R
o+ L

Efu(s)y(s+r)] =0 V¥ #(0,0).

4

oy,
s

.

Hence (2.17) is true since y(*) is Gaussian. To prove (2.18),

o

Sw(z) = (1 = G(2))%8,,(z), from (2.20)
= (v/K)(1 - Y g2"), from (2.2) and (2.19).

Hence E|v}(s)] = v/K.

XXXx

The conditional expectation in (2.17) has, in general, an infinite number of terms. The

e s next question is the determination of conditions under which the conditional expecta- \

:j:: tion in (2.17) has a finite number of terms. The answer is in Theorem 4. e

o 2
4,
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Definition: A sequence y(*) is weak noncausal markov if the following is true:
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Ely(s)| all y(s+r), r#0,0] = Ely(s)| all y(s+r), reN, N is finite, symmetric, (0,0) ¢ N]

Theorem 4: A stationary sequence is weak noncausal markov and possesses a finite
linear conditional expectation indicated in (2.21) if and only if the process y(+) has an

all pole spectral density, i.e., B(z) in (2.2) is a constant

Ely(s)| all y(s+r), r#(0,0)) = 33 gy(s+r), (2.21)
reN,

where (0,0) ¢ N,, N, is symmetric and finite, g, = g_,.

Proof: ‘If’ part: Let the spectral density of y be v/A(z). By theorem 3, the conditional

expectation is defined in terms of g, in (2.19),

g =0,ifreNy,
=0, r#(00),r¢N,.
Hence the conditional expectation has a finite number of terms.
‘only sf’ part:
Let u(s) = y(s) = y(s)

= y(s) = ( % g,2)y(s)- (2.22)

Since y,(°) is the conditional expectation,

Elu(s)y(s +t)] =0, %t # (0,0). (2.23)

Let EJu(s)y(s)) = K;. Multiply (2.22) on both sides by y(s+t) and take expectation.
Let R(t) = E[y(s)y(s +t)).




R(t) - ¥ gR(t-1) =0,if t #(00),
reN

=K,, if t=(0,0),by(2.23).

Take fourier transform on both sides of the above equation.

(l b E grz)sy(z) = Kl
reN,

i.e., S;(z) has an all pole spectral density.

Comment 1: Parts of the theorem 4 have been known in the literature [1-3]. The aim

of giving the theorem is to show the equivalence of the following three statements.

(i) y(°) has the conditional expectation in (2.21).
(i) y(<) has an all pole spectral density v/A(z)
(iii) y() obcys the conditional AR model in (2.5) where the driving input e(*) has the

spec’ral density A(z).

This equivalence is never explicitly stated in the literature. For instance in [2] both (i)

and (iii) are together used in defining the CAR model.

Comment 2: Every sequence y(*) which is causal markov and has the linear expectation
in (2.16) defined by a neighbor set N, also possesses the noncausal markov property in

(2.21) with neighbor set N;, N; D N,. The reverse is not true [3].

We mentioned earlier that y(*) obeying a general ARMA model in (2.5) does not
possess the noncausal markov property. However a small subset of ARMA models

possesses another markov property called as semi-causal or half-plane markov.
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Definition: (semi-causal or half-plane markov): y(+) is said to be linear half-plane mar-

kov with respect to the neighbor set N if

Ely(s)/ all y(s+1), re L¥] = ¥ O,y(s+r), (2.24)
reN

where L* = {(j,k): k €0, (k) # (0,0)}). L* is displayed in figure 1. N is any subset
of L* defined below.

N =N, UN,,
N; = {(i,0), (-i,0); i = 1,...,m,} (2.25)
Np = {(ij), i = -1,...,~my i = *I, #2, , +m}

We will presently display a subset of ARMA models, the so-called semi-causal

models which have the semi-causal markov property.

AQ)y(s) = Vv efs) (2.26)

where

A(z) =1- Y] 6,27, Nin (2.25)
reN

m, K
=1- Y Oozf + 2%
k=1

m, my
- 2 2 0k,'zlkz2—')
k=-ml f=1

The correlated seduence e(*) has zero mean, Gaussian probability density and spectral

density in (2.28) or correlation function in (2.29) t_:!
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S(2) 8B &1 3 0, g(ap+5i7)
p=0

R.(kf§) =0 , iff #0
Ree(k,()) = —ok,o , ifk = il’---v:kml’ 9k,o = 0—k,0
=1 . itk=0

=0 , otherwise

Eq. (2.26) can be written as the difference equation in (2.30)

y(i,) = kz' B oly(i+k) + y(ikj)]
=1

i %l E’ Oy y(itk,j—0) + Vie(iyj).

k=-m| 9=1

(2.28)

(2.29)

(2.30)

A necessary and sufficient condition for the stability of (2.30) is given below [Thm.

5 of [9]].

A(zy,29) #0 for |zy| =1, |2 > L

(2.31)

The model in (2.26) is called semi-causal because it is causal in the index j, i.e., in

the RHS of (2.30), j +k, k > 1 does not appear.

Theorem 5:

The stationary sequence y(°) defined in (2.26) and (2.27) possesses the weak half-

plane markov property in (2.24) ¢f and only if the input sequence e() in it has the

5
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correlation function in (2.29) or equivalently y(®) has the spectral density

vB(z)/| | Az)| | 2.

Proof: ‘If’ part:

Sey(z) = Cross spectral density of e(*) and y(),

= Bald) _ )
= vB(z)/A(z!).

Expanding S,,(z) in power series we see that the coefficient of any term involving z,',

§ > 1is zero. Hence,

R,,(k,0) & Ele(i,j)y(i-k,j~0)] =0, if > 0. (2.32)
Let
R(k) 2 R,,(k,0). ~ (2.33)

Multiply (2.30) by e(i +k,j), take expectation on both sides and use (2.32) and (2.33).

R(k)- 3} 0, oR(k+p) - R(k-p)] = R..(k0), (2.34)
=1

Let S(z;) be the one dimensional discrete fourier transform of R(k). Multiply (2.34) by

27X, sum from k = —oo to 0o and use R,,(k,0) in (2.29).

B(z,)S(zy) = vB(z;)

Hence S(z;) = v

or R, (k,0) =0,ifk #0 (2.35)

Hence (2.32) and (2.35) yield

e GRENN L

.

S . \ PN
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= Ele(s)y(s+1)) =0 VreL?, (2.36a) ;
;
:ﬁ Since ¢(*) and y(°) are Gauss, the above equation yields 5
208 A
-': E[e(s)| all y(s+r1), r e L+] =0. (2.36b) :3:
: b, . | . |
i Taking conditional expectation of y(s) given all y(s+r), re L™ on both sides of (2.26) R
U\ and using (2.36b) yields (2.24). :
R b
‘ 1 : '
Eos Only if’ part. 5
EE:: Since (2.24) is true, (2.36) is true. Multiplying (2.30) by e(k,0), { #j, and taking l
L) expectations on both sides by using (2.36) we get ‘
o Ele(i,j)e(k,0)] =0 Vj # ¢ (2.37) (
et o
:C:Z; Multiplying (2.30) by e(i,j) and taking expectation on both sides using (2.36) we get j
Tat
ex Efe(ii)y(ii)} = Ele*(ij)) = » (2.38) ’
"‘é" Multiplying (2.30) by e(i+k,j) and take expectations on both sides ;:
r = j
1
_:_: R, (k,0) = 3 6,0R(k+p,0) + R, (k-p,0)] + R.(k,0) (2.39) ;
x_ p=1 :':
- o
- By (2.36), R.y(k,0) = 0if k #0 (2.40) {.’
b 4
:Z;ZS; Substituting for R,y (k,0) in (2.39) from (2.40) and (2.38), we get the desired expression ;
o for R.(k,0) in (2.29). ;
o5 ]
i
R :
el
or A
N3
LS
-:-_‘.'_‘l




S - A L et A A A B AR A R A A5 L IR SR A S T TR S I Tt Sl B S AL SR Y
T S T S T T T T T T O O T S T T T T TN N T S e S R TR TR T T AT e e e

-19-

Comment 1: For images with specific boundary conditions Jain [8, 9] has shown that
the models in (2.26) have the weak semi-causal property. In theorem 5, we have esta-

blished the converse also without imposing any specific boundary conditions.

Comment 2: A semi-causal markov sequence is also causal markov only in the degen-
erate case B(z) = 1, i.e,, o = 0 if k # 0. In this degenerate case, it also possesses the
noncausal markov property w.r.t. to a suitable symmetric set N,. Apart from this case,

a semi-causal markov sequence is never noncausal markov or vice versa.

Comment 3: In this entire section, we have discussed only the weak markov property.
In the Gaussian case the weak markov property is the same as the strong markov pro-
perty involving the factorization of probability density. Some additional results con-

nected with the strong (noncausal) markov property can be found in [3, 13].

IIl. Parameter Estimation from Correlations

Given a finite image over the MxM grid (1, we want to develop a procedure for
fitting a ARMA model in (2.5) to it, i.e., estimating the unknown parameters in it after
fixing the neighbor sets N; and N,. We will give 2 procedures. In this section the
parameters are estimated using the estimated correlations and it is independent of the
density of the image. The method is computationally easy, and does not involve any
iteration. This state of affairs is in contrast to the parameter estimation of ARMA
models in the time series case. We will point out the reason for the difference. Note

that here 6, = 6(r) and R, = R(r). N;, i=1,2,... are finite symmetric subsets of

{L—(0,0)}. Ng; and Ng; are mutually exclusive antisymmetric subsets defined by the fol-

lowing relations:

o - e T e e o -
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B N; =NgUNs, Ng N Ng; =0, If (i,j) € Ngy(-i,-j) ¢ Ngy. L

Without loss of generality we can make Ng; a subset of (L-L™—(0,0)) where L™ is

defined in Figure 1. Let the polynomials A and B in the spectral density of the process
y(*) in (2.2) be:

A(z) =1- Y 62" +27") ,#Ng, =m,.

r(Ns, .

M

B(z) =1+ Y ¢z +127") #Ng, = m,.

reNg,

s
N

C &

¥ EX 4
LA

L“

Let NS] = {rl’---’rm,}’ NSZ & {sl’---ysmg

The corresponding ARMA model equation is

[}
IE-:
LA
oy
EPe
o'
e
Iy
(Y
-

YE) = 35 Or)y(s+r) +ylsr) + Vo efs), (3.1)

=1

where e() has the following cross spectral density

Sey(z) = Vv B(z),

i.e.Ele(s)y(s+r1)] = Vi, if r =0, (3.2a)
=V ¢, if reNy, (3.2b) o

= 0, otherwise. (3.2¢)

Choose a symmetric set N; having 2m, nearest neighbors of (0,0) so that J*«-!

N3 M N, = 0. Note Nj is not unique.

NS3 = {tl’tZ!-u:tm,;t’m:+ l!'"’tm,}'

We will obtain an explicit expression for the coefficients 6,, ¢,, v in terms of the

correlations R(s).
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Multiply (3.1) by y(0) on both sides and take expectation on both sides using (3.2a).

R(O) =23 0(rR(r;) + v. (3.3)
P

Multiply (3.1) by y(s+s;), s;¢Ngq, on both sides and take expectation using (3.2b).

R(s) = 3 0r)[R(r+s) + R(smr,)] + vé(s), i=1,..,my. (3.4)
=1

Multiply (3.1) by y(s +t;), t;eNg; on both sides and take expectstion acing (3.2¢).

my
R(t) = Y o0(r;) {R(t; +r) +R(tT))}, i=1,...,m,, (3.5)

=1
In (3.3), (3.4) and (3.5), the true correlations R( ) can be replaced by their estimates
and the resulting equations can be solved for ('), ¢(*) and 1{*) as indicated below. The

steps are:

(i) Choose the set Ngs.

(ii) Estimate the various correlation needed in (3.3), (3.4) and (3.5).

R() = 317 5 y(aly(s+),

where summation extends over all valid s in @ and M, is the number of admissible

values of s.

(iii) Solve the m, linear equations in (3.5) for #(ry), . .., 0(rml) to yield the correspond-

ing estimates

(iv) Solve the linear equation (3.3) for v after replacing 6(*) by 8, yiclding the estimate
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(v) Solve the linear equation (3.4) for ¢(*) after replacing 8 by 8 and v by i.

It is important to note that the computation does not involve any iteration. One
can show that the estimates are consistent, i.e.,, as the size of the image M goes to
infinity, the estimates tend to their true values provided A(z) and B(z) do not have any

common factors.

Comment 1: The procedure needs the choice of the set N;. The set could be arbitrary
as long as it is exclusive of N,. Empirical evidence indicates that the one suggested
here, namely having 2m, nearest neighbors, leads to the estimate with higher accuracy

than other choices.

Comment 2: As noted earlier, no iteration is needed in the computation. In contrast,
the estimation of parameters by the covariance method in the one dimensional ARMA
model is much more complicated and involves iteration. The reason for the different
behavior is the difference in the model equations. In the 2D case the input sequence e(*)
is correlated. In the 1-D ARMA case the input sequence, w(*), is independent. If we
convert the 1-D ARMA equation into a form similar to eq. (3.1), then the computation
procedure indicated in this section can be used for 1-D case also. Note that in this sec-
tion, we aim at estimating directly the coefficients occurring in the spectral density,
whereas in traditional 1-D ARMA case, we estimate the coefficients of C(z;) and D(z,)
where S(z;) = | | C(zy)| | ¥/] | D(zy)] | %

The sequence of computation is illustrated by an example.
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Example 1: Let the ARMA model be as in (3.6) and (3.7).

| FAC A AORES ] o ar

.;. y(s) =8 % y(s+r) + Vive(s) , (3.6)

: reN,

l N, = {(0,2), (0-1), (1,0), (~1,0)}

= B)=1+¢ Y 7N, =N, (3.7)
reN,

The required choice of Ng3 = (1,1). Note R;; = R;_; = R;;. From (3.4), we get

Ro‘o = 40R’l,0 + V. (38)

From (3.5), we get

3 Rio = 0RootRy0+2R, )] + v9, (3.9)
= From (3.6), we get

t Ry = 20[R o +R, ). (3.10)
;: Solving (3.8)-(3.10) for 6, ¢ and v is straightforward. The numerical results are given in

the next section.

A vy, .
R Poh - &

IV. Likelihood

" i
N JoR

g

When the number of parameters to be estimated is not very small compared to the

image size M2, then the estimates given carlier may not be accurate. Hence, we intro-

.'.'...\H l.'.-. '4., ’,'.’.J"

duce the more accurate method of estimation, the so called likelihood method. As

before let the given set of observations be y.

Y = Col.[y(s),s¢0)]

2 d Nl

-

D
S
4

"
B
"

-------




o0l ),

: a4 "
0= ()0 < i,j < M1

! "
:- Let the spectral density of y be vB(z)/A(z). Let us assume that y is Gauss. Then we

: can find the correlation function R(s) of y(*) as a function of 6;,¢; and v from the spec-
E tral density. Then we can find the covariance of the vector y, say C. Thus y is Gauss '
\ [0,C(6,4,v)). But the matrix C is of dimension M2xM?2 and R(s) is not a simple function g
of s, 6, v and ¢. Hence the above density expression for y is not useful for tasks like
. maximizing it to find the parameter estimates. We have to be content with an approx- '
\ imation to the probability density function of y so that it is amenable for optimization. :
1 Let {Y,ref2} be the finite fourier transform of the finite sequence {y(s),seQ2}. Then

g as M tends to infinity, the sequence {Y,} is independent and Gauss with mean zero and

variance M? S (6,4,v) (14] in (4.2).

R =

LI
.

_ M1+g"y)

a7
-0

v‘-'l

= Col.(2¢cos(27/M)rTs, seNg,), a, = Col.(2cos(2x/M)rTs, seNg,) N
2h

- - " oa_a 8
LA FLEATR ey

@ = Col.(¢,, reNgy), § = Col.(8,, reNg,)

Asymptotically, the probability density of {Y,} is:

p(Y,, reig ) = [TT 1/(27S, (88 exp(1/2) | | Y| | /M (0g.0]. (4.9) :
red refl .

-

We can show [12] that, if we transform {Y,, ref2} in (4.3) into {y(s), sc{1}, then the 3

RESINS S5 SR 9 ' RCRI

RHS of (4.3) is the ezact probability density of a set of observations obeying the X
toroidal variant of the ARMA model described below which is valid for the region 0 b4

only.
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i) = % 6yls © 1) + y(s Or) + Vie(s), sen, (4.4) 5
reNg; hd
where © denotes summation modulo M,
y(s) = y(s mod M), e(s) = e(s mod M).

{e(s), s} have the correlation function described earlier.
The expression on the RHS of (4.3) has to be maximized w.r.t. §, ¢ and v. It is

more convenient to work with the log likelihood.

Ji(8,6v) = —(M%/2)In(27v)-1/2 Ylog(1 +¢Ty,)/1-6Ta,)]

L ST B IR ™
. Y fo te fe te 20 ¢y

TS N

r
~(1/2) § | | Y1516 /(1 + ¢ T M, (4.5)
re(}
Maximizing J; w.r.t. v yields
v = (B Yol | 218 /(1 + T ))/M! (4.6) 2
r %

Substituting it back, and simplifying, we see that the ML estimates of § and ¢ are
obtained by minimizing J(§,4) w.r.t. § and ¢.

8 = X logl(1+¢"4)/(1-4"a)]
ref} s
v
(16" i
+ M Y,| |2 —=
= 2 I gy

Since the minimizing value of (4,¢) has to yield a finite value for J(-), the ML estimates

of 0 and ¢ automatically satisfy the conditions and l+'g'rg{t #0 l—'ng', #0 for all r.

Thus the ML estimates of § and ¢ satisfy (2.3). We cannot make such a claim for the

estimates obtained by the correlation methods especially for small M. The numerical -

aspects of maximization have been discussed in [4,15] for the case of AR models. -
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The likelihood approach can be adapted to the particular situation on hand. If we
know that the observation is the sum of a signal obeying a CAR model and an additive
noise, then we can directly write the likelihood and estimate the parameters of the
CAR model and the corresponding spectrum. If the signal plus noise assumption is
true, any spectral estimation method which ignores the noise will not give good results.

This feature has been documented in [16).

Numerical Experiments

The correlation and maximum likelihood estimates are compared via numerical
experiments. The image model in example 1 of section IV is considered, with numerical
values § = 22, ¢ = .2 and v = 1. Ten different images of size 64x64 obeying this
model were synthesized using different random sequences, as discussed in section V. In
each case, the parameter estimates were computed by both the methods. For ¢, # and
v, the mean of the 10 estimates, the standard duration (SD) of the 10 estimates and the
root mean square value of the deviation of the estimate from the true value (RMSE)
are given in table 1 for both correlation and ML estimates. Similar experiments were
performed with images of size 32x32 and 16x16 and the results are also given in table

1.

For 64x64 images, the SD and the RMSE are close to one another. Further the

correlation estimates and the ML estimates of ¢ and @ have similar accuracy. The

el
-
K

correlation estimate of v appears to be slightly biased. But as the size of the image

decreases, the RMSE values of the ML, estimates are less than the corresponding values

o e
et

3 O e i

.‘"' of the correlation estimate. This feature is to be expected. But the quality of correla-
;_-;.'-:.
:\E-"j; tion estimate is not unduly low. For instance for 32x32 image, the RMSE values for

ML and correlation estimates of  are .0124 and .0182, not very drastic. In many image
processing problems the correlation estimates appear to be adequate, especially in view

of their low computational demand.

. . ee e O S T i
LN O K O SR o e P o S5
. . CRESICA \‘n~,‘- ..- o m \d- [ % Y ke o O 2. %5



l’\

B
Jaoa_ N

o S
[N
) ..A_... .t K

A ST TN
4 0

L4

C.

-

1

4%, %o

x
2Ty %
PR

EEOT

..................

e ok o A B el RIS, LT ST JT S e 5 ... -.. {'-. -..o.. o P R R O R S M P L o = \.' *. \. \- ..n ',. \-'..
B R AT AR LRI LSRR S '\. .°..,-' LYo A T N *x} \.\‘.‘- S, 5 "»." X (\4- I
B »

s i o R iUl e Sl Sl S o Sl e A A Al (o L R S e St et T e o -}

-927.

V. Synthesis

An interesting problem in image processing is the synthesis of an image which
resembles a real texture. There are many methods of synthesizing images, each one
based on a different type of model. Synthesis has been done using various types of 2D
AR models [5, 13, 17-20], and mosaic models [21-22]. Our aim is to explore the use of
ARMA models. In an ARMA model in (2.11), there are three sets of parameters:

(1) the order of ARMA model, i.e., the sets Ng; and Ng,
(ii)  the values of the coefficients

(i)  the histogram or density of the input process w(*) in (2.11).

The choice of the appropriate order of the 2D AR models, suitable for a given
image is given in [12, 23]. A similar procedure is suitable for ARMA model. The esti-
mation of parameters has already been discussed. We will discuss a convenient method
of synthesizing an image obeying a ARMA model. Techniques for synthesizing images
via CAR and SAR models to resemble a given texture which takes into account all the
aspects mentioned above is given in [13, 19].

The synthesis of a finite MxM image to obey ezactly the difference equation in
(2.5) or (2.11) is very difficult. It involves the factorization of a M?xM? matrix whose
elements are the correlation of various lags. It is still more difficult to ensure that the
density of the synthesized y(*) has the prespecified form. Instead consider the toroidal
variant of the ARMA model in (2.11) which can be compactly written in terms of

{Y,, reQ1}, the FFT of (y(s), seN)

VAY, = Vv /BW, (6.1)
A, = Az = exp(V-1(2x/M)r), B, = B(z = expv-127r/M).

{W,, reQ} is the FFT of {w(s), sef?}, {w(s), se©2} being drawn from an LLD. sequence

with zero mean, unit variance and the histogram P mentioned later on. As M tends to
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infinity, the second order properties of the sequence obeying the toroidal ARMA model
in (6.1) tend to that of the general ARMA model in (2.5) or (2.11). Eq. (4.4) is also an
equivalent toroidal representation which is the direct analog of (2.5).

To generate the histogram P of w(:), for the given image we proceed as follows.
Using the given smage say {y'(s), seQ?} and the (estimated) parameters 0, ¢, v etc., gen-

erate residuals {w'(s), sef?}. The corresponding FFT can be computed as
W, =Y, VA/Bs

where {Y,, ref?} is FFT of {y'{s), se}. The inverse FFT of {W,, re1} yields the
{w(s), seQ1}. The histogram of w is the required histogram P.

A. The Synthesis Procedure is as follows:

() Generate a sequence {w(s), se?} drawn from an LLD. population with zero

mean, unit variance and histogram P.

(i) Compute W, reQ

W, =% 1, .w(s)
sefd

where f, , is the fourier array, refl, sefl

f,, = exp[v-1 % sTr], s,req

(iii) Compute y(s), sef) the required image matrix

Vv

. Bl’
Y(S) = 2 fr,swr —A—r M2

refl
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V1. Conclusions

We have introduced the general class of two dimensional ARMA models which can
represent any discrete rational spectral density and shown that the various classes of
two dimensional difference equation models discussed in the literature are subclasses of
this general class. We have also given various definitions of weak markov processes and
precisely characterized subclasses of ARMA models having the various types of markov
properties. Two methods are given for estimating the parameters in the model.

Finally, a technique is given for synthesizing an image obeying a given ARMA model.

Acknouwledgement: The author would like to thank Mr. G. Boray for carrying out the

numerical experiments of section IV.
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